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Abstract

Finite differences approximate the mth derivative of a function u(x) by a series
PN

j¼�N dðmÞj uðxjÞ, where the xj are the grid
points. The closely-related discrete singular convolution (DSC) and Lagrange-distributed approximating function (LDAF)
methods, treated here as a single algorithm, approximate derivatives in the same way as finite differences but with different
numerical weights that depend upon a free parameter a. By means of Fourier analysis and error theorems, we show that
the DSC is worse than the standard finite differences in differentiating exp(ikx) for all k when a P aFD where
aFD � 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

with N as the stencil width is the value of the DSC parameter that makes its weights most closely resemble
those of finite differences. For a < aFD, the DSC errors are less than finite differences for k near the aliasing limit, but much,
much worse for smaller k. Except for the very unusual case of low-pass filtered functions, that is, functions with negligible
amplitude in small wavenumbers k, the DSC/LDAF is less accurate than finite differences for all stencil widths N. So-called
‘‘spectrally-weighted’’ or ‘‘frequency-optimized’’ differences are superior for this special case. Consequently, DSC/LDAF
methods are never the best way to approximate derivatives on a stencil of a given width.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A pseudospectral method is a finite difference method in which the stencil is the entire grid [10,15]. Boyd [5]
showed that one could derive both standard finite differences and also a great variety of nonstandard differ-
ence schemes by applying ‘‘sum acceleration’’ or ‘‘summability’’ methods to the pseudospectral difference
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sums. Sum acceleration methods apply running averages or similar artifices to the slowly-converging pseudo-
spectral series so that these can be truncated to stencils of finite width without a drastic loss of accuracy.

The linear distributed approximating functional (LDAF) method was invented in 1991 by Hoffman et al.
[20]. By 1997, the original concept had been refined to use a basis in which each element is the product of a
Lagrangian interpolating cardinal function (as in classic finite differences) but multiplied by a Gaussian taper-
ing function. Wei replaced the polynomial by the sinc function and dubbed the result the discrete singular con-
volution (DSC) method [3,13,41,43]. It is impossible to review the work of this very prolific author in detail,
but of the more than one hundred articles listed at http://www.math.msu.edu/wei/, most use the DSC or
LDAF schemes. Since the sinc function is closely related to polynomial interpolation as lucidly explained
in [14,15], the Gaussian-weighted LDAF and DSC are so closely related that it is sufficient for our purposes
to treat them as one.

Although the LDAF/DSC literature justifies the method through a rather elaborate machinery of smoothed
Delta functions, Schwarz distribution theory and so on, the end result is that derivatives are approximated by
formulas of the same form as classical finite differences [4] except that the numerical weights of the grid point
values are different. The LDAF/DSC is also a special case of Boyd�s earlier theory of sum-accelerated pseudo-
spectral methods: special in that the weighting function is a Gaussian. Is this a good weight?

In the remainder of this article, we answer a resounding: No! In Sections 2 and 3, we review two essential
background technologies: Fourier analysis of derivative approximations and sum-accelerated sinc pseudospec-
tral methods. In Section 4, we show that by using this formalism, one can derive standard finite differences by
a non-standard route and prove a rigorous theorem for the error in differentiating exp(ikx). In the following
section, we derive a similar theorem for the error in the DSC method.
2. Fourier analysis

Fourier analysis has been widely used to analyze difference formulas ever since this was popularized by von
Neuman. The reason is that the Fourier basis function, exp(ikx), is an eigenfunction of both the differentiation
operator and also of all possible difference formulas. This implies that the accuracy of difference formulas can
be assessed – and improved – merely by comparing the eigenvalues.

Theorem 2.1. Let h denote the spacing of a uniform grid:
xj � jh. ð1Þ

Define a grid-scaled differentiation operator:
Dm � i�mhm dm

dxm
; ð2Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

. Introduce the centered approximation
Dapp
m uðxÞ �

XN

j¼�N

dðmÞj uðxþ jhÞ; ð3Þ
where ‘‘centered’’ implies
dm
j ¼ ð�1Þmdm

�j. ð4Þ
The set of (2N + 1) points xj ” jh, j = �N, . . .,N, is said to be the ‘‘stencil’’ of the difference formula. Define the

scaled wavenumber
K � kh. ð5Þ

Then the differentiation operator has the exact eigenrelation
Dm expðikxÞ � Km expðiKx=hÞ ð6Þ
and the difference operator has the exact eigenrelation

http://www.math.msu.edu/wei/
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Dapp
2mþ1 expðiKx=hÞ � j2mþ1 expðiKx=hÞ � 2

XN

j¼1

dð2mþ1Þ
j sinðjKÞ

( )
expðiKx=hÞ; ð7Þ

Dapp
2m expðiKx=hÞ � j2m expðiKx=hÞ � dð2mÞ

0 þ 2
XN

j¼1

dð2mþ1Þ
j cosðjKÞ

( )
expðiKx=hÞ. ð8Þ
The error in the differentiation eigenvalue is then
EðmÞðK; N ; dðmÞ�N ; d
ðmÞ
�Nþ1; . . . ; dm

NÞ � Km � jm. ð9Þ
The theorem reduces approximate differentiation to an exercise in Fourier approximation. The formulas
have been scaled by the wavenumber h so that in this convention, the difference weights dðmÞj are independent
of h; there is no loss of generality therefore in taking h = 1, i.e., unit grid spacing, in the rest of the article.

The reason that the approximate eigenvalue jm is a periodic function of scaled wavenumber K is because of
aliasing: on a discrete grid, frequencies higher than the ‘‘aliasing limit’’
Kalias � p$ kalias ¼ p=h ð10Þ

are indistinguishable on the grid from lower frequencies in the range K 2 [�p,p], and therefore are differen-
tiated as if they were the aliased frequency in this low frequency range instead of the true, higher frequency.
Aliasing is an inevitable consequence of differentiation, and the choice of difference weights cannot alter it.

3. Sum-accelerated pseudospectral methods and the sinc basis

The sinc pseudospectral method is the ultimate difference scheme in the sense that it differentiates exactly all
unaliased wavenumbers as proved by the Shannon–Whittaker sampling theorem [10,34]. The sinc difference
weights are obtained by differentiating the infinite series
uðxÞ � usincðxÞ ¼
X1

j¼�1
uðjhÞsincðx=h� jÞ; ð11Þ
where
sincðxÞ � sinðpxÞ
px

. ð12Þ
The basis functions are often called ‘‘Whittaker cardinal functions’’ because, defining the jth ‘‘cardinal
function’’ as
Csinc
j ðx; hÞ � sincðx=h� jÞ; ð13Þ
the basis functions have the property that
Csinc
j ðxi; hÞ ¼ dij �

1; i ¼ j;

0; i 6¼ j.

�
ð14Þ
The differentiation weights are then
dm
j ¼ hm

dmCsinc
j ðxÞ

dxm

�����
x¼0

. ð15Þ
The weights are independent of h (except for the explicit factor of hm), and are conveniently evaluated for
h = 1.

The great drawback of the sinc method is that its great accuracy is purchased at the price of an infinite sten-
cil. In practice, the requirement that u(x) decays exponentially for |x|!1 implies that the grid can be trun-
cated to some large-but-finite span; the derivative sums are then truncated to summations over the entire
truncated grid. Although the sinc pseudospectral method and related Fourier and Chebyshev polynomial
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pseudospectral algorithms have been enormously successful in all branches of science and engineering
[9,10,15,28,34,35,38], it obviously would be desirable if one could somehow obtain (nearly) spectral accuracy
from a difference formula with a small stencil instead of a summation over the entire grid.

For the first two derivatives in the sinc basis, the weights are
dð1Þ;sinc
j ¼ ð�1Þjþ1

=j; dð2Þ;sinc
j ¼ ð�1Þjjjþ1ð2=j2Þ; jjjP 1;

�p2=3; j ¼ 0

(
ð16Þ
and are given for the next four orders of derivatives in p. 569 of [10]. The sinc differentiation eigenvalue for the
first derivative is the usual sine series for the piecewise linear or ‘‘sawtooth’’ function:
K ¼ 2
X1
j¼1

ð�1Þjþ1 1

j
sinðjKÞ. ð17Þ
The first option to obtain a sparse stencil is to simply truncate the infinite series at some upper limit n. This is a
really bad idea because the error in the series, truncated after n terms, is O(1/n), and therefore unacceptably
large.

However, the problem of summing slowly convergent series is an ancient one. A broad collection of schemes,
known variously as ‘‘summability’’, ‘‘sequence acceleration’’ or ‘‘sum-acceleration’’ methods have been devel-
oped. Boyd [5] was the first to apply such ideas to pseudospectral series to invent the form of nonstandard dif-
ferences called ‘‘sum-accelerated pseudospectral’’. Boyd�s first effort used the ‘‘Euler’’ acceleration. Variants of
the Euler summation are described in [7,8]. Nonlinear sequence accelerations, that is, sums which are nonlinear
functions of the terms in the series, are applied to nonstandard differences in [6] (‘‘Levin u-transform’’ and ‘‘Padé
approximants’’).

Mazziotti and collaborators have successfully applied the Euler-sinc method to a variety of problems in quan-
tum chemistry [12,23,29,30]. Boyd [6] showed that for a differential equation example, the Euler-sinc method is
better than finite differences.

On the other hand, Lee and Seo [24] experimented with Euler acceleration and Chebyshev acceleration, but
needed formulas of very small bandwidth for turbulence research, and opted for spectrum-fitted compact dif-
ferences instead.

4. Finite differences as a sum-accelerated pseudospectral method

Finite differences are usually justified by Lagrangian interpolation, but Boyd [6] showed that the same stan-
dard formulas could be obtained by applying a sum acceleration method to the sinc derivative sums:
du
dx
ð0Þ �

XN

j¼�N

uðxjÞwfd
Njd
ð1Þ;sinc
j ; ð18Þ
where the sinc derivative coefficients are defined by (16) and where the weights for the first two derivatives
are
wfd
Nj ¼

CðNþ1Þ2
CðNþjþ1ÞCðN�jþ1Þ ; j P 1;

6
p2

PN
k¼1

1
k2 ; j ¼ 0.

8><
>: ð19Þ
Amusingly, the finite difference weights are ‘‘self-truncating’’: the poles of the gamma function for negative
real argument imply that wNj = 0 for all integer |j| > N.

Boyd [6] shows that the asymptotic approximation
CðN þ 1Þ2

CðN þ jþ 1ÞCðN � jþ 1Þ � exp � j2

N þ 1=2
� j4

6ðN þ 1=2Þ3

 !
ð20Þ
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is very accurate. The fact the weight function is nearly a Gaussian will be very important to the connection
between the LDAF and DSC methods discussed in the following section.

Theorem 4.1 (Finite difference error for the first derivative). The error in the first derivative eigenvalue
Eð1ÞðKÞ � K �
X1
j¼1

ð�1Þjþ1wfd
Nj

2

j
sinðjKÞ ð21Þ
is given exactly by
Eð1ÞðKÞ ¼ 22N ðCðN þ 1ÞÞ2

Cð2N þ 1Þ

Z �pþK

�p
cos2N ðy=2Þ dy; jKj 6 p ð22Þ
and is given asymptotically for large N by the uniform approximation
Eð1Þ � p 1þ 1

8

1

N

� �� �
sin2Nþ1 K

2

� 	
exp Ncos2 K

2

� 	� 	
erfc

ffiffiffiffi
N
p

cos
K
2

� 	� �

� 2�ð2Nþ1ÞK2N þOðK2Nþ2Þ; K � 1; ð23Þ
where the maximum relative error in the approximation is about 0.15/N even for N as small as one and the max-

imum absolute error is about 0.4/N.

The proof of the theorem will be published separately because the argument is rather lengthy, employing
ideas unrelated to the mean themes of this article. For present purposes, the important point is that the relative
error for small K is about 2�2N + 1K2N, consistent with the usual definition of finite difference order. The fact
that the error is proportional to K2N = k2Nh2N, has been known through different arguments for many dec-
ades: an error proportional to h2N is the very definition of what it means for a classic finite difference formula
to be of order ‘‘2N’’.

5. LDAF and DSC methods

In the DSC method, the sinc approximation is modified by multiplying each basis function by a Gaussian
weighting function:
uðxÞ �
XN

j¼�N

uðxjÞ expð�a2½x� xj�2=h2ÞCsinc
j ðx; hÞ. ð24Þ
Differentiation of this sum followed by evaluation at x = 0 and exploitation of the cardinal function property
(14) gives
du
dx
ð0Þ �

XN

j¼�N

uðxjÞwDSC=LDAF
Nj dð1Þ;sinc

j ; ð25Þ
where
wDSC=LDAF
Nj ¼ expð�a2j2Þ. ð26Þ
This confirms the earlier assertion that the DSC derivative approximation is just the special case of a sum-
accelerated sinc scheme where the weighting function is a Gaussian.

Since the finite difference weights are nearly Gaussian, one cannot escape the conclusion that the LDAF/
DSC methods are really just high order finite difference methods in disguise! In reality, this is not true because
the small but importance differences between the finite difference acceleration weights and the Gaussian
weights make the LDAF/DSC significantly worse!

Fig. 1 shows the bad news: the error curve for 19th century differences is always below the error for the
DSC/LDAF method when
a ¼ aFD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN þ 1=2Þ

p
ð27Þ
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Fig. 1. Errors in the approximation of the piecewise linear (sawtooth) function using the DSC weighting (solid) with a ¼ aFD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN þ 1=2Þ

p
and finite differences (dashed). The stencil width is 2N + 1; thus, N = 2 in the upper left corner is equivalent to five-point,

fourth order finite differences and the five-point DSC approximation. The free parameter a in the DSC method was chosen to match the
asymptotic Gaussian form of the finite difference weights; experiments showed that larger or smaller a merely worsened the DSC errors.

J.P. Boyd / Journal of Computational Physics 214 (2006) 538–549 543
to match the asymptotic form of the finite difference weights. For larger K, the error curves are almost indis-
tinguishable, but as K! 0, the finite difference error drops much rapidly than for the DSC method.

The reason is that the finite difference weights are such that the error for small K is O(K2N) which is also
O(h2N); this is merely the usual definition of ‘‘order’’ for a finite difference method. In contrast, the pure
Gaussian weight is a method of ‘‘order zero’’ in the sense that the DSC cannot exactly differentiate any poly-
nomial in x, not even the constant polynomial.

The error for general scaling width a inside the weighting functions and for general stencil half-width N is
given by the following.

Theorem 5.1 (Error in Gaussian-weighted/DSC). The exact error for the Gaussian-weighted approximation to

the first derivative eigenvalue
EDSCðN ; aÞ � K �
X1
j¼1

ð�1Þjþ1 expð�a2j2Þ 2
j

sinðjKÞ ð28Þ
is given by
EDSCðN ; aÞ ¼ Ediff þ Etrunc; ð29Þ
where the ‘‘diffusion’’ error is
Ediff � p
X1

m¼�1
erf
½K � pð2mþ 1Þ�

2a

� 	
þ erf

pð2mþ 1Þ
2a

� 	� �
ð30Þ
and the ‘‘truncation’’ error is
Etrunc �
X1

j¼Nþ1

ð�1Þjþ1 expð�a2j2Þ 2
j

sinðjKÞ. ð31Þ
Proof. The first step is to recognize an analogy between Gaussian weighting and diffusion. When the diffusion
equation is solved with boundary conditions of spatial periodicity, the general solution is a Fourier series in
which u(x, t) is just the initial condition with a Gaussian weight applied to each term. Thus, the Gaussian
weighting can be conceptualized as a diffusion of the discontinuity of the sawtooth. Define
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Ediff � K �
X1
j¼1

ð�1Þjþ1 expð�a2j2Þ 2
j

sinðjKÞ. ð32Þ
Then the solution of the diffusion equation for the piecewise linear initial condition yields without
approximation
Ediff ¼ p
X1

m¼�1
erf
½K � pð2mþ 1Þ�

2a

� 	
þ erf

pð2mþ 1Þ
2a

� 	� �
. ð33Þ
Ediff is the error made by diffusing the infinite series, and DSC/LDAF differences are truncated after the Nth
term, giving an additional error Etrunc. Subtracting the higher order sine terms gives the exact result quoted in
the theorem. h

It is possible to derive useful asymptotic approximations to the error. When a is not too small, it is only
necessary to keep the leading term in the truncation error, yielding
Etrunc � 2

N þ 1
expð�a2ðN þ 1Þ2Þ sinð½N þ 1�KÞ; aN � 1; jKj small. ð34Þ
Numerical experiments, not shown, indicate that even for a � O(1), the approximation is correct to within a
factor of two. Employing the large-argument asymptotics of the error function gives
Ediff � � 2ap1=2

ðK � pÞ exp � 1

4

ðK � pÞ2

a2

( )
� 2a

p1=2
exp � 1

4

p2

a2

� �
; a� 1; jKj < p. ð35Þ
The two errors, Ediff and Etrunc, behave very differently with respect to the width parameter a and K. The diffusion
error goes to zero in the limit a! 0 and is highly localized near |K| = p, decaying exponentially fast as K! 0. In
contrast, the truncation error decreases as a increases; when a� 1, the terms in the Fourier series are strongly
damped and consequently the truncation error falls proportional to exp(�a2(N + 1)2). However, the truncation
error is not spatially localized in K but rather oscillates more or less uniformly over the whole domain.

Fig. 2 shows the errors for general a and K for a stencil width of 33, i.e., N = 16. The lower dashed line
labeled FD where a = aFD(N) is the cross-section plotted in the lower right panel of the previous figure.
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J.P. Boyd / Journal of Computational Physics 214 (2006) 538–549 545
The shaded region shows that when a < aFD, the finite difference error is worse than that for the Gaussian
weighting – but only for K > p/2. This implies that the DSC method could be superior in differentiating a func-
tion u(x) that has a Fourier spectrum peaked near the aliasing limit. However, the shaded region does not
extend much below K = kh = p/2, which means that better accuracy for large K has been purchased at the
price of much poorer accuracy for Fourier components whose wavelengths are longer than 4h.

The best accuracy for small K is obtained by choosing a to be slightly greater (typically 15%) than aFD,
yielding errors as small as O(10�11) near K = 0 instead of 10�7. This is indeed the width of the Gaussian
weights chosen in typical DSC papers such as [13,40] as marked on the figure by the black disk and dotted
line. For this choice, the errors for the Gaussian-accelerated/DSC differences are always worse than finite
differences of the same stencil width for all wavenumbers k.

Because of their relatively poor performance for small wavenumber K where most functions have their
maximum Fourier amplitude, DSC papers use very wide stencils: never less than 17 points, and more often
65. The cost of a difference method is roughly 2(2N + 1)Ng operations (counting both multiplications and
additions), where Ng is the total number of grid points. A Fourier method requires one forward and one
reverse fast Fourier transform (FFT) to do the same job at a cost of about (15/2) log2 (Ng)Ng operations.
The pseudospectral method is faster for
N g < expð0:37NÞ ð36Þ

which implies that the Fourier method is more efficient for Ng < 20 when N = 8, for Ng < 370 when N = 16
and for Ng < 138,000 when N = 32, the most popular half-stencil width in DSC applications. Clearly, one rap-
idly reaches a point of diminishing returns as the difference order increases, which is why very high order
differences are rarely used in applications.

Why are finite differences so superior to DSC, given that both employ weights that are close-to-Gaussian?
The answer is that the finite difference weights are tuned to give maximum accuracy in the limit K! 0. In
contrast, the truncation error Etrunc for the DSC does not decay as K! 0. Given that the Fourier spectra
of smooth functions fall off exponentially as |K| increases, even small errors near K = 0 are intolerable.
6. Spectrally-weighted least squares differences

Since the DSC is more accurate than finite differences for K > p/2 when the width parameter a is chosen
smaller than 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

, one might suppose that the DSC would be useful for f(x) that have Fourier spectra
that are highly concentrated in |K| 2 [�p/2,p]. Because there is another approach that is more targeted at such
specialized functions, the answer is: Probably not.

The central idea of ‘‘spectrally-weighted’’ differences is to choose the differentiation weights in a difference
formula so as to minimize error for a function whose Fourier spectrum is known, at least approximately.

Theorem 6.1 (Difference optimization). Define the Fourier transform of a function u(x) by
UðkÞ � 1ffiffiffiffiffiffi
2p
p

Z 1

�1
uðxÞ expð�ikxÞ dx. ð37Þ
Define the differentiation error as, repeating the earlier definition,
EðmÞðK; N ; dðmÞ�N ; d
ðmÞ
�Nþ1; . . . ; dm

N Þ � Km � jm; ð38Þ
where the dðmÞj are the weights for the approximation of the mth derivative. The mean square error is then
H �
Z 1

�1
ðEðmÞðKÞÞ2 dK ¼ 1

h

Z 1

�1
U

K
h

� 	����
����
2

Km �
XN

j¼�N

dðmÞj expðijKÞ
�����

�����
2

dK. ð39Þ
Therefore, the least square error is minimized by choosing the differentiation weights to be the coefficients of a

Fourier expansion of Km with an integration weight that is the square of the Fourier transform of u(x).

A proof is given in [6,42]. This theorem has been independently discovered several times, perhaps first by
Wesseling [42]. The theorem motivates the following:
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Definition 6.1 (Spectrally-weighted differences). A difference scheme is said to be ‘‘spectrally-weighted’’ if the
weights for the mth order derivative with a centered stencil of 2N + 1 points are chosen to minimize
Table
Spectr

Refere

Adam
Adam
Boyd [
Colon
Farnu
Gaiton
Gaiton
Gray a
Haras
Holbe
Jordan
Lele [2
Liu [26
Locka
Orlin e
Tam a
Tam a
Vanel
Wesse
Zingg
Zingg
Z p

�p
xðKÞ Km �

XN

j¼�N

dðmÞj expðijKÞ
�����

�����
2

dK; ð40Þ
where x(K) is the user-chosen weight function. These are also known as ‘‘frequency-optimized’’, ‘‘wavenumber-
optimized’’ and ‘‘dispersion-relation-preserving’’ differences, and also are labeled by the names of specific
weight functions.

The limits of integration have been truncated to [�p,p] since it is not possible to effectively approximate Km

outside the aliasing limit |K| = p.
The usual Fourier series, which gives the differentiation weights of the sinc pseudospectral method, corre-

sponds to a weight of unity. In other words, the sinc weights are optimal for a function with a ‘‘white noise’’
spectrum that is everywhere equal to one over the entire unaliased range.

The finite difference weights correspond to the other extreme in which the L2 norm of the error is minimized
when weighted by the Dirac delta-function which concentrates all the weight at K = 0. Functions that are ana-
lytic in a strip of finite width about the real axis and decay exponentially for large x have Fourier tranforms
that decay exponentially for large k. Thus, typical functions will lie between the sinc and finite difference
extremes – and this is the fact that makes effective spectrally-weighted differences possible.

Because the literature is so large, we have tried to list a modest selection of articles in Table 1. There are
undoubtably many omissions.

The weights can be calculated by solving a linear algebra problem. Define
/jðKÞ �
sinðjKÞ; j ¼ 1; 2; . . . ½m odd�;
cosðjKÞ; j ¼ 0; 1; 2; . . . ½m even�.

�
ð41Þ
Define the matrix and vector elements
Gij �
Z p

�p
/iðKÞ/jðKÞxðKÞ dK; vi �

Z p

�p
/iðKÞKmxðKÞ dK. ð42Þ
1
ally-weighted differences: a partial bibliography

nces Comments

s and Shariff [2] Upwind-biased dispersion-optimized
s [1] Compact differences
6] Sech-weighted differences
ius [11] Wave-optimized differences
m and Mazziotti [12] Gegenbauer-weighted differences
de and Shang [16] Optimized finite volume schemes
de et al. [17] Optimized finite volume schemes
nd Goldfield [18] Dispersion-optimized differences
and Taasan [19] Space-and-time wave-optimized differences

rg [21,22] Wave-optimized differences
and Mazziotti [23] Gegenbauer-weighted differences

5] Very high order compact finite differences
] Spectrally-weighted differences

rd et al. [27] Wavenumber-range-optimized differences
t al. [31,33,32] Dispersion-relation-optimized differences
nd Webb [37] Dispersion-relation-preserving differences
nd Li [36] Optimized for K = 1.1
and Baysal [39] Dispersion-relation-optimized differences
ling [42] Frequency-optimized differences
et al. [45] Wave-optimized differences
[44] Comparisons of many schemes
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Then the differentiation weights are obtained from solving the matrix problem
~~G~d ¼~v. ð43Þ

This matrix may be very ill-conditioned unless x(K) = 1, so Boyd [6] employed the singular value decompo-
sition instead of the usual LU factorization.

Although we shall not perform detailed comparisons between DSC and spectrally-weighted differences, the
good performance of DSC for high k and small a is an accident. It seems likely that for f(x) which are known
to have spectra concentrated between K = p/2 and K = p, one could obtain higher accuracy from spectrally-
weighted differences than from DSC.

7. Summary

We have not shown that the DSC/LDAF method is inaccurate; on the contrary, by using stencils of 17–65
points, most published DSC calculations are extremely accurate. The point is rather that for the same very
large stencil widths, finite difference approximations using the same number of points would be even more
accurate.

We have not shown that the DSC is ‘‘spectrally-inferior’’ to finite differences (in the sense of giving a poorer
approximation to the eigenvalue of the first derivative operator) for all wavenumbers k and all choices of the
DSC width parameter a. For a < 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

, DSC errors are slightly smaller than finite differences for wave-
lengths between two and four times the grid spacing h. However, this high-k superiority is purchased at the
price of much poorer accuracy than finite differences for small k where most functions have most of their Fou-
rier amplitude. In the rare case of a function which is known to be ‘‘low-pass filtered’’ so that its Fourier trans-
form is negligible for k < (p/2)h, one could obtain better accuracy than DSC by using ‘‘spectrally-weighted’’ or
‘‘frequency-optimized’’ differences as explained earlier.

Thus, the DSC/LDAF method is never the method of choice for approximating derivatives. It would, how-
ever, be premature to dismiss all the vast DSC/LDAF literature; the proliferation of papers has taken the con-
cepts into wavelets, applications and a variety of other directions.

How can the DSC/LDAF algorithms be salvaged? One could of course try a different sum-acceleration
weighting from the Gaussian. However, this is merely to explore various instances of the sum-acceleration
methods of [5].

Acknowledgments

This work was supported by the National Science Foundation through Grant OCE9986368. I thank G.W.
Wei for his detailed comments on an earlier draft. I also thank the reviewers for their suggestions.

Appendix A. Fourier analysis for nonperiodic functions

The partial sums of a Fourier series are always periodic, even if the function f(x) they represent is not. Thus,
the Fourier series of a nonperiodic function converges not to f(x) itself but rather to a periodic function ~f ðxÞ
which is equal to f(x) on x 2 [�p,p] and then jumps discontinuously at the x = ±p so as to repeat the same
shape periodically for all real x. Because of the discontinuities, the Fourier coefficients an and bn decay as O(1/
n); the Fourier coefficients of the first derivative do not decay at all.

This would seem to suggest that, except for the special case of applications to periodic functions, Fourier
analysis of difference formulas would be a symptom of grave mental illness or mathematical imbecility. The
reason that Fourier analysis is both very sensible and very general is that away from boundaries, a function
f(x) can always be represented by a rapidly convergent Fourier series. The trick is to multiply f(x) by a ‘‘win-
dow’’ function so as to create a new function
f̂ ðxÞ � T ðxÞf ðxÞ; ðA:1Þ

where T(x) is chosen to have the properties that (i) T(x) ” 1 over some finite interval and (ii) T(x) decays
smoothly to zero as jxj ! 1. Many window functions are possible, but a suitable choice is
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T ðxÞ �

1; x 2 ½�2; 2�;
1
2

1� erf L signðxÞ jxj�ð1þp=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2�1Þ2�½jxj�ð1þp=2Þ2
p

� 	� �
; 2 < jxj < p;

0; jxjP p;

8>>><
>>>:

ðA:2Þ
where L is an arbitrary positive constant. The zones where T = 1 and T = 0 can be stretched by inserting addi-
tional scaling factors in the definition, but (A.2) demonstrates the basic idea.

Because the function f̂ ðxÞ agrees with f(x) on a finite interval, here chosen as [�2,2], the approximations
and errors from applying difference formulas to f(x) and f̂ ðxÞ will give identical results along as the span of
the grid stencil is confined to this interval. At the same time, because T(x) is ‘‘infinitely flat’’ at x = ±p in
the sense that all its derivatives are zero, all derivatives of f̂ at x = p will match their counterparts at
x = �p – all in fact being zero. An elementary integration-by-parts argument then shows that the Fourier
coefficients of f̂ ðxÞ will decay faster than any finite inverse power of degree n.

It follows that arguments based on Fourier analysis, as in the main body of this review, are completely gen-
eral on the interior of the domain. Near the boundary, the windowing argument needs to be modified. How-
ever, near the endpoints, it is necessary to replace centered differences by partially or completely one-sided
differences, and we have already agreed to exclude such regions from consideration.

In fact, it is possible at some cost in tedious detail to extend the principles of both windowing and the Fou-
rier analysis of difference schemes to un-centered schemes near the endpoints, too. We shall not pursue such
extensions here because our purpose is only to illustrate the general idea of nonstandard differences.
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